Package: DJL 3.9

DJL: Distance Measure Based Judgment and Learning

Implements various decision support tools related to the Econometrics & Technometrics. Subroutines include correlation reliability test, Mahalanobis distance measure for outlier detection, combinatorial search (all possible subset regression), non-parametric efficiency analysis measures: DDF (directional distance function), DEA (data envelopment analysis), HDF (hyperbolic distance function), SBM (slack-based measure), and SF (shortage function), benchmarking, Malmquist productivity analysis, risk analysis, technology adoption model, new product target setting, network DEA, dynamic DEA, intertemporal budgeting, etc.

Authors:Dong-Joon Lim, Ph.D. <technometrics.org>

DJL_3.9.tar.gz
DJL_3.9.zip(r-4.5)DJL_3.9.zip(r-4.4)DJL_3.9.zip(r-4.3)
DJL_3.9.tgz(r-4.4-any)DJL_3.9.tgz(r-4.3-any)
DJL_3.9.tar.gz(r-4.5-noble)DJL_3.9.tar.gz(r-4.4-noble)
DJL_3.9.tgz(r-4.4-emscripten)DJL_3.9.tgz(r-4.3-emscripten)
DJL.pdf |DJL.html
DJL/json (API)
NEWS

# Install 'DJL' in R:
install.packages('DJL', repos = c('https://tgno3.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.93 score 1 stars 86 scripts 592 downloads 24 exports 61 dependencies

Last updated 2 years agofrom:057a53eac2. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 23 2024
R-4.5-winNOTENov 23 2024
R-4.5-linuxNOTENov 23 2024
R-4.4-winNOTENov 23 2024
R-4.4-macNOTENov 23 2024
R-4.3-winOKNov 23 2024
R-4.3-macOKNov 23 2024

Exports:dm.ddfdm.deadm.dynamic.bcdm.hdfdm.mahalanobisdm.network.deadm.sbmdm.sfma.aps.regmap.corrmap.soa.ddfmap.soa.deamap.soa.hdfmap.soa.sbmmap.soa.sfplproc.dearoc.hdfroc.malmquistroc.sftarget.arrival.deatarget.arrival.hdftarget.arrival.sftarget.spec.dea

Dependencies:abindbackportsbootbroomcarcarDataclicolorspacecowplotcpp11DerivdoBydplyrfansifarverFormulagenericsggplot2gluegtableisobandlabelinglatticelifecyclelme4lpSolveAPImagrittrMASSMatrixMatrixModelsmgcvmicrobenchmarkminqamodelrmunsellnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigpurrrquantregR6RColorBrewerRcppRcppEigenrlangscalesSparseMstringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewithr